Q-ball imaging.

نویسنده

  • David S Tuch
چکیده

Magnetic resonance diffusion tensor imaging (DTI) provides a powerful tool for mapping neural histoarchitecture in vivo. However, DTI can only resolve a single fiber orientation within each imaging voxel due to the constraints of the tensor model. For example, DTI cannot resolve fibers crossing, bending, or twisting within an individual voxel. Intravoxel fiber crossing can be resolved using q-space diffusion imaging, but q-space imaging requires large pulsed field gradients and time-intensive sampling. It is also possible to resolve intravoxel fiber crossing using mixture model decomposition of the high angular resolution diffusion imaging (HARDI) signal, but mixture modeling requires a model of the underlying diffusion process.Recently, it has been shown that the HARDI signal can be reconstructed model-independently using a spherical tomographic inversion called the Funk-Radon transform, also known as the spherical Radon transform. The resulting imaging method, termed q-ball imaging, can resolve multiple intravoxel fiber orientations and does not require any assumptions on the diffusion process such as Gaussianity or multi-Gaussianity. The present paper reviews the theory of q-ball imaging and describes a simple linear matrix formulation for the q-ball reconstruction based on spherical radial basis function interpolation. Open aspects of the q-ball reconstruction algorithm are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACCURATE ODF RECONSTRUCTION IN Q-BALL IMAGING By

Introduction: Q-ball imaging (Tuch 2004) is a high angular resolution diffusion MR imaging technique proven successful in resolving multiple intravoxel fiber orientations. Standard computations of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball use radial projections and do not consider the solid angle, resulting in distributions differ...

متن کامل

Real-Time MR Diffusion Tensor and Q-Ball Imaging Using Kalman Filtering

Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an increm...

متن کامل

Novel spherical phantoms for Q-ball imaging under in vivo conditions.

For the validation of complex diffusion imaging techniques like q-ball imaging that aim to resolve multiple fiber directions, appropriate phantoms are highly desirable. However, previous q-ball imaging phantoms had diffusion anisotropies well below those of in vivo white matter. In this work, fiber phantoms of well-defined geometry are presented. The fibers are wound on a spherical spindle yiel...

متن کامل

PDFlib PLOP: PDF Linearization, Optimization, Protection

This chapter reviews multiple-fiber reconstruction algorithms for diffusion magnetic resonance imaging (MRI) and provides some initial comparative results for two such algorithms, q-ball imaging and PASMRI, on data from a typical clinical diffusion MRI acquisition. The chapter highlights the problems with standard approaches, such as diffusion-tensor MRI, to motivate a recent set of alternative...

متن کامل

MULTIPLE q-SHELL ODF RECONSTRUCTION IN q-BALL IMAGING By

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2004